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Introduction 

Methods of modeling microclimatic variability in areas with complex terrain and weather 

patterns such as California’s North Coast Region are evolving in the field of geospatial analysis. 

Several different fine-scale interpolated climate gridded datasets exist that have been used in 

varying applications to different efficacies (Stern et al., 2022).  

Access to microclimatic datasets at sufficient resolution to support detailed projections of 

ecological impacts of climate change is currently limited. Climate surface models are rarely 

generated or interpreted to a resolution as fine as 1 km (Suggit et al., 2011). Operating on a 

microclimate scale, a piece of naturally bounded land 1 km or smaller, air temperature is difficult 

to measure on its own (Daly et al., 2007).  

The OSU department of Geosciences, College of Oceanographic and Atmospheric Sciences 

developed a statistical regression model, PRISM (parameter-elevation regressions on 

independent slopes model) for climate mapping. PRISM utilizes weighted parameters based on 

spatial patterns of climate and their relationships with geographic features. The model integrates 

discrete data from weather monitoring stations as well as digital elevation models (DEM) to 

generate estimates of annual, monthly, and event-based climatic elements (Daly et al., 2002). 

PRISM parameters include aspect and topographic exposure, precipitation, and coastal 

proximity. 

Applications of PRISM for the use of interpolated climate-datasets in areas lacking robust 

observation-based dataset have proven effective at estimating minimum and maximum 

temperature at an 800-meter resolution cell size in the California-Nevada basin (Strachan et al., 

2017). We intend to use this approach in coastal Northern California, a heterogenous landscape 

influenced by the climate regimes of the Pacific Ocean and the topography of the Klamath and 

Trinity Mountains. Local verification from weather stations is accessible to support higher-

resolution modeling. 

The goal of this analysis is to determine specified climatic variability in the North Coast region 

at higher spatial resolution than is currently available as open-source datasets, while maintaining 

clear and comprehensible implementation. The study develops existing methodology from Daly 
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and PRISM to produce modeled data sets of continuous surfaces representing ground surface 

temperature for future use in resource management. The deliverable will address the current data 

gaps by generating 20-year average (2000-2022) gridded temperature datasets at 30-meter spatial 

resolution. 

PRISM 

 

This work was guided by the research of Dr. Christopher Daly and the PRSIM Climate Group, 

who develop datasets representing short- and long-term climate patterns as part of he Northwest 

Alliance for Computational Science and Engineering. For our research purposes, we applied the 

methods to a 30 m resolution prediction raster in the North Coast region.  Most microclimates 

occur on a sub kilometer level, and as such, benefit from representation with raster data in a 30 m 

spatial resolution (Suggit et al., 2010). 

 

PRISM integrates topographic covariates representing the major physiographic factors 

influencing climate patterns at scales of 1 km and greater, including elevation, coastal proximity, 

topographic facet orientation, vertical atmospheric layer, and topographic position (Daly et al., 

2002, Daly et al., 2008). 

 

A combination of dense data station sets, and the physiographically sensitive PRISM 

interpolation process improves gridded climate data sets in spatially heterogenous regions with 

variable terrain (Daly et al., 2007). Greatest improvements observed in mountainous and coastal 

areas of the western United States characterized by sparse data coverage, large elevation 

gradients, rain shadows, inversions, cold air drainage, and coastal effects (Daly et al., 2008). 

These factors were considered in the implication of the PRISM modeling approach in our North 

Coast region. 
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In Situ Data  

 

We collected ground surface temperature data from the Western Regional Climate Center 

(WRCC) database for Wildland Fire Remote Operated Weather Stations (RAWS) in the North 

Coast Region. Figure 1 shows the location of 38 stations used in the mapping process and the 

North Coast Region boundary. We obtained monthly average temperature values by averaging 

daily values for each station for the years 2000-2022. Quality control procedures removed null 

values from the data, as some stations were installed after the initial year or had missing data 

when the station was down. 

 

 
Figure 1. RAWS locations used in temperature interpolation for the North Coast region. 
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Raster Data 

 

We obtained 30 m DEM tiles from the EarthData NASA Shuttle Radar Topography Mission 

(SRTM) dataset. CalTrout provided a North Coast region boundary (Figure 1) which we used to 

mask the DEM and derivative layers to the study area. All datasets and spatial analysis use the 

World Geodetic System 1984 (WGS84) Universal Transverse Mercator (UTM) zone 10 North 

projection, chosen for shape and angle preservation, and for scale in Northern California. From 

the DEM we created the following 30 m gridded datasets used in the PRISM algorithm: 

topographic facet, topographic position, and vertical atmospheric layer.  

 

Topographic Facet 

The topographic facet, herein absolute aspect, describes the exposure of the slope (a proxy to 

solar exposure) measured at a 180° East and West radius. We created an absolute aspect layer 

using the spatial analysist tool in ArcGIS Pro with the DEM input.  

 

Topographic Position 

The topographic position describes the surface roughness, or localized topography of the terrain 

in a given radius. We created the topographic position layer using a low-pass Gaussian filter on 

the input DEM to average terrain features within a 10 km radius of influence and preserve local 

detail around the central grid cell, maintaining 30 m resolution (Daly et al., 2008). The values in 

the topographic position grid describe the height of the pixel relative to the surrounding terrain 

height (Daly et al., 2007).  

 

We performed sensitivity tests for topographic position layer parameters and found the 10 km 

averaging radius to be an appropriate scale to represent a site’s suitability to cold air pooling 

based on its vertical positions relative to its local topographic features i.e. valley bottom, mid 

slope, or ridge top (Daly et al., 2008). 
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Vertical Atmospheric Layer 

The vertical atmospheric layer describes the potential temperature inversion height, where 

temperature increases with increased elevation. We created the vertical atmospheric layer using a 

similar Gaussian filtering method as topographic position grid to estimate the boundary layer 

where an inversion occurs and the free atmosphere above it (Daly et al., 2008). In this case, we 

found the minimum elevation within an 10 km radius and averaged the results to produce a 

‘minimum’ elevation grid. We applied the low pass Gaussian filter to the minimum elevation 

grid and used this value to apply the low pass filter to produce a ‘base’ elevation grid. To the 

base elevation grid, we added a constant height of 250 m to represent the mean climatological 

inversion height above sea level based on studies by Daly et al. (2008).  

 

We performed sensitivity tests for vertical atmospheric layer parameters and found the 10 km 

averaging radius to be an appropriate scale to represent valleys in the boundary layer and 

prominent ridges in the free atmosphere layer (above the potential inversion height). 

Climate-elevation regression  

 

The climate-elevation regression function uses simple linear regression to describe the 

relationship between observed temperature and elevation values from the weather station data. 

The function is given in Daly et al. (2008), and implements (X,Y) coordinates of observed 

temperature and elevation values to form the equation: 

 

Y = β1X + β0 

 

Where Y is the predicted temperature of the target grid cell, β1 is the slope, β0 is the intercept, and 

X is the elevation at target grid cell.  

 

 

 

 

 

 



Tyler, 7 
 

Weighted Regression 

 

We implemented a weighted simple regression formula using a weighted least squares model 

(Weisberg, 2014) to calculate for the coefficients β1 and β0 using the weighted station values, 

where the optimal pair (β0, β1) is: 

 β0 = 𝑦̅𝑤 −  β1𝑥̅𝑤  

 

  β1 =
∑ 𝑤𝑖(𝑥𝑖−𝑥̅𝑤)(𝑦𝑖−𝑦̅𝑤)𝑛

𝑖=1

∑ 𝑤𝑖(𝑥𝑖−𝑥̅𝑤)2𝑛
𝑖=1

  

 

And where 𝑦̅𝑤 and 𝑥̅𝑤  are the weighted means given by: 

 𝑥̅𝑤 =
∑ 𝑤𝑖𝑥𝑖

𝑛
𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

 

 𝑦̅𝑤 =
∑ 𝑤𝑖𝑦𝑖

𝑛
𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

 

 

Station weighting 

To calculate the predicted temperature value (Y in the climate-elevation regression function), at 

the target cell, each station contributes a weight based on a radius of influence to the target cell 

and the contribution of the topographic covariates between the points. The weight of each station 

is given by the equation described in Daly et al. (2008): 

 

W = [ Fd Wd
2 + Fz Wz

2 ]1/2  Wp Wf Wl Wt  

 

Where W is the station weight, Fd  is the user-specified distance weighting importance scalar of 

and Fz  is the user-specified elevation weighting importance scalar of given in Daly et al. (2002), 

provided in Appendix A of this report. References for the weighting equations for each raster 

element are given in Table 1; we applied these equations as they are in the reference papers, 

implementing the default parameters of the user-specified values given in Daly et al. (2002), 

provided in Appendix A of this report.  For each 30 m grid cell, the model performed a distance-

weighted average of all surrounding grid cells within a 100km radius to predict the temperature 

value. 
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Table 1. PRISM weighting algorithms, table adapted from Daly et al. (2008). 

PRISM Algorithm Description Reference 

Elevation-Regression 
Function  

Develops local relationships 
between climate and 
elevation 

Daly et al. (2008), Section 4.1 

Distance Weighting (Wd) Upweights stations that are 
horizontally close (longitude) 

Daly et al. (2008), Section 4.2.1 

Elevation Weighting (We) Upweights stations that are 
vertically close (latitude) 

Daly et al. (2002), Section 4.1 

Topographic Facet 
Weighting (Wf) 

Upweights stations on the 
same exposure 

Daly et al. (2002), Section 5 

Coastal Proximity 
Weighting (Wp) 

Upweights stations with 
similar exposure to coastal 
influences 

Daly et al. (2002), Section 6 
Daly et al. (2003), Sections 
2.3.2 - 2.3.3 

Vertical Atmospheric 
Layer Weighting (Wl) 

Upweights stations in the 
same vertical layer (boundary 
layer or free atmosphere) 

Daly et al. (2002), Section 7 
Daly et al. (2003), Sections 
2.3.2 - 2.3.4 

Topographic Position 
Weighting (Wt) 

Upweights stations with 
similar localized topography 

Daly et al. (2007), Section 4 

 

 

Evaluation 

 

To perform cross validation on the predicted temperature values, we measured the difference 

between the observed station value and the model’s expected value, removing one station at a 

time from the dataset. For each prediction value we generated root-mean-square deviation 

(RMSD) to measure the average difference between the observed and predicted values. RMSD 

was included as a performance in the sensitivity tests to evaluate the model’s response to the 

implementation of different phases in the modeling process, as well as the contribution from 

individual covariates. We computed the RMSD value for each raster and averaged these values 

to obtain the average error in our model. 
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Results 

 

Using the methods for deriving the PRISM algorithm described in Daly et al. (2002, 2003, 2007, 

2008), we produced 264 raster datasets representing monthly average ground surface temperature 

in the North Coast Region for the years 2000-2022. The average RMSD value was 1.2 °C, 

meaning the model is accurate within 2 °C over a 20-year temporal range for generating monthly 

average temperature predictions. Figures 2 and 3 show the results of prediction rasters for the 

months of January and June, 2020 with relatively cooler temperatures in blue and relatively 

warmer temperatures in orange. The area to the west of the North Coast region boundary is the 

Pacific Ocean and was not included in temperature prediction, the values outside the DEM have 

been ignored as no data values and excluded from the prediction model at the current modeling 

stage. 

 
Figure 2. Predicted average monthly temperature values for January 2020 showing relatively cooler temperatures to the 
northeast and relatively warmer temperatures to the southwest. 
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The results show some error in the southwest region of the study area in dark red where 

predicted temperature values are outside the expected range. 

 

 
Figure 3. Predicted average monthly temperature values for June 2020 showing relatively cooler temperatures to the localized 
north and relatively warmer temperatures to the localized south. 

. 
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Discussion 

 

Dr. Daly and the PRISM Climate Group have been developing the PRISM algorithm and 

publishing reports with various applications and iterations of the model since 1994. Part of the 

efforts of this report are to represent a comprehensive analysis of the PRISM methods and 

generate a complete and robust resource for the supplemental equations use in the modeling 

process. Efforts were made to apply the most current data available in the literature when 

creating our 30 m temperature prediction model and supplementing our own research where 

methods for deriving raster covariates and function equations we ambiguous. While PRISM is 

widely used to analyze climatic patterns across the conterminous United States, implementing 

the model at higher spatial resolutions may be limited by the complexity of the topography and 

access to high-quality observed temperature datasets at the appropriate temporal resolution.  

 

Producing higher-resolution data involves error handling that may not be applicable at 

resolutions greater than 1 km where the landscape loses some complexity. At a 30 m resolution 

spatial scale, however, local knowledge of climatic influences and microclimate regimes is a 

particularly important aspect for visual inspection and verification of the results across the study 

area. Evaluating the efficacy of the model in discerning the relative influence landscape-

temperature interactions requires careful corroboration with local climate patterns to discern 

meaningful results. We accepted some fine-scale spatial error in our results for the purpose of 

representing large-scale temporal results. The goal of our analysis is ultimately to discern 20-

year patterns for average monthly temperature, which will be used to evaluate areas of 

vulnerability or resiliency to climate change. 

 

The approach at this time is to cautiously accept gross localized errors where predicted values 

are far outside an expected range, and to exclude any model components that are affecting the 

quality or generating errors in the entire study area. Currently, the coastal proximity raster and 

weight (Wc) is excluded from our model for this reason. To address this issue and further refine 

the model to represent a holistic approach of describing landscape-temperature interactions, we 

intend to evaluate the model using each weight separately and determining what effect it has on 

the result, based on its physiographic forcing property. Additionally, we intend to normalize the 
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scale of the temperature values so they can be applied to larger-scoped projects where 

temperature itself will be used as a covariate in modeling landscape level climate interactions. 
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Appendix 

A. Table 2, descriptions and typical ranges of PRISM parameters used in regression function 

and weighting equations given in Daly et al. (2008), Section 3. For our modeling purposes, 

we used the default values for all equations. Parameters excluded from the most current 

model are minimum number of on-facet stations used in regression equation (Sf) and 

cluster weighting (Wc), described in Daly et al. (2008), Appendix B.  

 
Table 1. PRISM function and weighting parameters, sources from Daly et al. (2008), Section 3 
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